Possibilistic and fuzzy clustering methods for robust analysis of non-precise data
نویسندگان
چکیده
منابع مشابه
HURST EXPONENTS FOR NON-PRECISE DATA
We provide a framework for the study of statistical quantitiesrelated to the Hurst phenomenon when the data are non-precise with boundedsupport.
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملPossibilistic linear regression analysis for fuzzy data
Fuzzy data given by expert knowledge can be regarded as a possibility distribution by which possibilistic linear systems are defined. Recently, it has become important to deal with fuzzy data in connection with expert knowledge. Three formulations of possibilistic linear regression analysis are proposed here to deal with fuzzy data. Since our formulations can be reduced to linear programming pr...
متن کاملA Heuristic Approach to Possibilistic Clustering for Fuzzy Data
The paper deals with the problem of the fuzzy data clustering. In other words, objects attributes can be represented by fuzzy numbers or fuzzy intervals. A direct algorithm of possibilistic clustering is the basis of an approach to the fuzzy data clustering. The paper provides the basic ideas of the method of clustering and a plan of the direct possibilistic clustering algorithm. Definitions of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Approximate Reasoning
سال: 2017
ISSN: 0888-613X
DOI: 10.1016/j.ijar.2017.05.002